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Summary 23 

Modified Vaccinia virus Ankara (MVA) is a candidate vaccine vector that is severely attenuated due 24 

to mutations acquired during several hundred rounds of serial passage in vitro. A previous study 25 

used marker rescue to produce a set of MVA recombinants with improved replication on 26 

mammalian cells. Here we extend the characterisation of these rescued MVA strains and identify 27 

vaccinia virus (VACV) gene F5L as a determinant of plaque morphology, but not replication in vitro. 28 

F5 joins a growing group of VACV proteins that influence plaque formation more strongly than virus 29 

replication and which are disrupted in MVA. These defective genes in MVA confound the 30 

interpretation of marker rescue experiments designed to map mutations responsible for the 31 

attenuation of this important VACV strain.  32 

 33 

Main text 34 

Modified Vaccinia virus Ankara (MVA) is a leading candidate vector for recombinant poxvirus 35 

vaccines (Gomez et al., 2008). MVA was the result of several hundred rounds of serial passage 36 

starting with the virulent strain chorioallantois vaccinia virus Ankara (CVA) in primary chicken 37 

embryonic fibroblasts (Mayr et al., 1975). In contrast to the broad host range typical of VACV, MVA 38 

fails to replicate in all but a few mammalian cell lines (Carroll & Moss, 1997, Drexler et al., 1998, 39 

Jordan et al., 2009, Okeke et al., 2006). The full genomic sequences of CVA and MVA have been 40 

published (Antoine et al., 1998, Meisinger-Henschel et al., 2007). In addition to six large deletions 41 

(termed Deletion I to VI),mutations affect coding in more than 60% of the annotated ORFs of MVA 42 

compared with CVA (Meisinger-Henschel et al., 2007, Meyer et al., 1991). However, the mutations 43 

responsible for the host range restriction of MVA in vitro and its attenuation in vivo remain 44 

unknown.  45 

 46 

MVA does not form plaques on monolayers of most mammalian cells and this characteristic can be 47 

exploited in marker rescue experiments to map genetic lesions underlying the restricted host 48 

range. Using cosmids with genomic fragments from a replication-competent VACV strain, referred 49 

to as ‘Ankara’, Wyatt et al (1998) made a set of rescued MVAs that replicate on mammalian cells. 50 

These rescued MVAs were selected on the basis of increased plaque size on BS-C-1 cells and the 51 



work broadly mapped the location of the mammalian replication defect of MVA to several regions 52 

at the left end of the genome (Wyatt et al., 1998). One known host range gene, namely SPI-1, 53 

which resides in deletion I, was repaired in some of the rescued MVAs (Shisler et al., 1999). While 54 

SPI-1 may contribute to the host range defect, other work has shown that the major deletions 55 

(even in combination) cannot account for the replication defect of MVA on mammalian cells in 56 

general (Dimier et al., 2011, Meisinger-Henschel et al., 2010). 57 

 58 

We began by following up apparent differences in plaque morphology across this set of rescued 59 

MVAs (Melamed et al., 2013, Wyatt et al., 1998). BS-C-1 and HeLa cells were infected with MVA, 60 

Ankara or the rescued MVAs and foci or plaques formed under semisolid media (0.4% w/v 61 

carboxy-methyl cellulose) were immunostained (Staib et al., 2004) at 72 hours post infection 62 

(h.p.i.). MVA failed to form plaques or foci on HeLa cells but small foci made up of a few tightly 63 

packed cells were seen on BS-C-1. The rescued MVAs exhibited a range of plaque morphologies 64 

on BS-C-1 and HeLa cells. A striking difference was seen between the plaques of v51.2 and v44.1 65 

grown on BS-C-1: v51.2 infected cells formed tightly packed piles whereas infection with v44.1 66 

caused the formation of obvious plaques with clearance of the monolayer at the centre (Fig 1a). 67 

The independently rescued v51.1 and v44.2 lineages also formed piles and plaques respectively 68 

(not shown). By contrast, and consistent with the previous report, we observed no difference in 69 

replication rates of v51.2 and v44.1 on BS-C-1, HeLa or IEC-6 cells in multiple step growth 70 

analyses (Fig 1b-d) (Wyatt et al., 1998). 71 

 72 

The three cosmids used to produce the rescued MVAs (namely c51, c44 and c47) cover the left 73 

end of the VACV genome, but recombination sites have not been defined (Fig 2a). Three of the 74 

major deletions of MVA (deletions I, V and II) lie within the region shared by c51 and c44 (Meyer et 75 

al., 1991). A simple PCR-based analysis of the rescued MVAs revealed that deletion I, but not V or 76 

II, was repaired both in v51.2 and v44.1 (not shown), consistent with reported PCR detection of the 77 

SPI-1 (deletion I) but not K1L (deletion II) host range genes (Wyatt et al., 1998). By contrast, all 78 

three deletions were repaired in v44/47.1, v44/47.2, v51.1 and v44.2. The relatively small repairs in 79 

v44.1 and v51.2 made these an attractive pair to study further. As an aside, examination of 80 



sequences surrounding the deletions suggest that Ankara is not closely related to CVA and MVA, 81 

confirming a recent report (Melamed et al., 2013). Cosmids c44 and c51 overlap substantially and 82 

both include most of the HindIII C fragment and the small HindIII N, M and K fragments. However 83 

compared with c51, c44 extends further rightwards and into the start of the HindIII E fragment 84 

(Wyatt et al., 1998). This suggested that gene/s in the HindIII F region, unique to c44, were 85 

responsible for the larger plaques made by v44.1. To test this, six genes: K6L, F1L, F5L, F11L, 86 

F12L and F13L, distributed across this region were sequenced for v44.1, v51.2 and Ankara and 87 

compared with those published for MVA. As expected, sequences from v51.2 matched those of 88 

MVA for all six genes but in v44.1, K6L, F1L, F5L, and F11L matched Ankara and so were repaired 89 

in this virus (region shown in Fig. 2c). 90 

 91 

To map the gene/s responsible for the plaque phenotype we carried out a set of marker rescue 92 

experiments. Firstly, K6L-F4L and F5L-F11L from Ankara were cloned into plasmids to bisect the 93 

region of interest. BHK-21 cells infected with v51.2 (m.o.i.=0.05) were transfected with 1 µg of 94 

linearized plasmid using Lipofectamine 2000 (Invitrogen). At 48 h.p.i., virus was harvested and 95 

used to infect BS-C-1. A single large plaque was isolated after recombination between the v51.2 96 

genome and the F5L-F11L plasmid. This virus (v51.2/F5L-F11L) was plaque purified and found to 97 

contain repaired versions of two truncated genes, F5L and F11L. F5L is transcribed early and 98 

predicted to encode a 36.5kDa major membrane protein (Yang et al., 2010, poxvirus.org). The 99 

MVA homologue lacks 104 aa of the c-terminus, including a putative transmembrane domain. F11L 100 

is required for efficient release of virus particles from infected cells, normal plaque size in vitro and 101 

virus spread in vivo (Cordeiro et al., 2009, Morales et al., 2008). Next we tested whether repair of 102 

F5L or F11L alone in v51.2 might produce larger plaques. The transfer plasmids for these 103 

experiments included a GFP/bsd marker under the control of the VACV strong synthetic promoter 104 

downstream of the gene to be repaired (Wong et al., 2011). This allowed visual (eGFP) and drug 105 

(blasticidin) selection of recombinant viruses in addition to possible increases in plaque size. A 106 

complication of adding GFP/bsd downstream of F5L and F11L is that the promoters of adjacent 107 

genes (F4L and F10L, respectively) are separated from their ORF. For this reason, these promoter 108 

sequences were repeated after the GFP/bsd marker cassette (Fig. 2d). These direct repeats also 109 



make the marker unstable in the absence of drug selection. The F5L and F11L rescue plasmids 110 

were linearised and transfected into BHK-21 cells infected with v51.2 (m.o.i.=0.05). Viruses with 111 

plaques larger than v51.2 were isolated after transfection with F5L (v51.2/F5LGb) and F11L 112 

(v51.2/F11LGb) and after 3-4 rounds of plaque purification on BS-C-1, the fidelity of repairs were 113 

verified by sequencing. In the case of v51.2/F5LGb, further passage allowed the isolation of a virus 114 

that had lost the GFP/bsd marker, but retained the repair of F5L (v51.2/F5L). 115 

 116 

Having isolated these viruses we compared plaque phenotypes and sizes (Fig 3a, b). Repair of 117 

F5L alone (v51.2/F5LGb and v51.2/F5L) had a strong effect on plaques: they were larger and there 118 

was significant monolayer clearance in the centre. The repair of F11L also increased plaque size 119 

but did not lead to clearance of cells from their centres. Further, the effect of F5L and F11L was 120 

additive because plaques made by v51.2/F5L-F11L were larger than those of viruses with repairs 121 

of F5L and F11L alone. Next we tested virus growth and found that neither F5L (with or without 122 

GFP/bsd), or F11L altered the replication of v51.2 in single or multiple step growth curves (Fig 3d, 123 

e). Finally, the use of the GFP/bsd marker allowed us to isolate an MVA with F5L repaired 124 

(MVA/F5LGb). Repair of F5L did not improve MVA replication or change plaque size on BS-C-1 125 

cells (Fig 3c, f). 126 

 127 

Wyatt et al (1998) concluded that multiple genes must be involved in the host range defect of MVA 128 

because non-overlapping cosmids improved replication and additive effects on plaque size were 129 

observed when multiple regions were repaired. However, their data are also consistent with a 130 

model where more than one gene can rescue replication, but multiple genes contribute to plaque 131 

size. We believe this latter model is a better explanation for the profound variation in plaque size 132 

but narrow range of virus titres obtained on BS-C-1 for the rescued MVAs as previously reported 133 

(Wyatt et al., 1998). It is also supported by the recent finding that v51.1, with a smaller plaque, 134 

replicates to higher titres on Vero cells than v44/47.1 (Melamed et al., 2013). From the literature, 135 

three VACV proteins that increase plaque size without enhancing replication are inactive or 136 

missing in MVA, namely C2, F11 and O1. C2 is a kelch protein that is required for the usual distinct 137 

borders of plaques made by VACV strain WR, but is lost from MVA, due to major deletion V (Pires 138 



de Miranda et al., 2003). As noted above, F11 plays roles in virus-induced cell motility (Valderrama 139 

et al., 2006) and in normal plaque size (Cordeiro et al., 2009, Morales et al., 2008). O1 is required 140 

for sustained activation of the RAF/MEK/ERK pathway and is truncated in MVA. Deletion of O1L 141 

decreases the plaque size of CVA (Schweneker et al., 2012). Despite their association with altered 142 

plaques, none of these genes has a strong influence on growth of VACV in vitro and for O1L and 143 

F11L this has been shown for MVA (Antoine et al., 1998, Morales et al., 2008, Pires de Miranda et 144 

al., 2003, Schweneker et al., 2012). F5L is now the fourth VACV gene function missing from MVA 145 

that is required for normal plaques, but not replication. 146 

 147 

We determined the status (repaired or not) of each of these four genes and plaque phenotypes 148 

across the full set of rescued MVAs allowing some further observations (Fig. 3g). 1) Of all the 149 

rescued MVAs, v44/47.1 has the largest plaques but their size remains smaller than Ankara. This 150 

suggests that genes outside the region mapped by Wyatt et al (1998) affect plaque size or 151 

replication. 2) The similarity (no significant difference in size) between v51.2/F5L-F11L and v44.2 152 

suggests that the individual contribution of C2L to plaque size is minor. 3) Repair of F5L and F11L 153 

increased plaque size, but F5L was required for the clearance of cells from the middle of plaques. 154 

Repairing both genes gave an additive increase in plaque size and together these suggest that F5 155 

and F11 act independently. 4) Plaques from v44/47.1 were larger again than v51.2/F5L-F11L 156 

suggesting that a gene in the region covered by c47 also has a strong influence on plaques. The 157 

most likely candidate here is O1L, consistent with results obtained when this gene was deleted 158 

from CVA (Schweneker et al., 2012). 5) Restoration of F5 and F11 to v51.2 gave larger plaques 159 

than v44.1. F5L and F11L are intact in v44.1, but the repairs in this virus do not extend as far to the 160 

left of the genome as in v51.2. It seems likely that this region also contains genes that affect 161 

replication or plaque formation (Fig 2a, b).  162 

 163 

In summary, we have identified the truncation of F5 as a determinant of plaque morphology but not 164 

in vitro replication in MVA. Further, the existance of F5L and several other genes required for 165 

normal plaque formation complicate the interpretation of work done to map attenuating mutations 166 

of MVA, which has assumed plaque size is an accurate surrogate for replication. We also show 167 



here that the relatively small single repair in v51.2 alone produces a substantial improvement in 168 

replication on three mammalian cell lines. Together these lead us to conclude that the range of key 169 

genomic changes associated with the replication defect of MVA in mammalian cells has been 170 

previously overestimated. 171 
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Figure legends 249 

 250 

Fig 1: Rescued MVAs show a range of plaque size and morphology on BS-C-1 and HeLa 251 

cells. (a) Representative plaques formed by the viruses shown on BS-C-1 or HeLa cells under 252 

semisolid media. Cells were immunostained at 72 h.p.i. (100× final magnification, scale bars 253 

100µm). (b-d) Multiple step growth analysis (m.o.i.=0.01) in (b) HeLa, (c) BS-C-1, or (d) IEC-6. 254 

Cells were incubated for 1h with virus then washed and fresh media added. 0 h.p.i. samples were 255 

harvested immediately after addition of fresh media. Cell associated virus collected at 24, 48 and 256 

72h.p.i. was titrated and divided by virus titre present after absorption. Data points represent mean 257 

± SEM of three independent wells. 258 

 259 

Fig 2: MVA genome and repairs in v51.2 and v44.1 (a) Map of the MVA genome showing the 260 

location of the six major deletions, indicated by grey boxes and the approximate location of 261 

cosmids used to make the rescued MVAs (blue bars). HindIII fragments of Copenhagen are 262 

marked for reference. (b) Approximate locations of identified repairs in v51.2 and v44.1 are 263 

indicated in relation to the rescuing cosmid (blue bar). Repairs surrounding deletion I in v51.2 and 264 

v44.1 are indicated by the green boxes and a second repair, unique to v44.1, by the red box. (c) 265 

Mapping of the repair unique to v44.1: ORFs shown in black are truncated in MVA compared with 266 

CVA. Genes shown in white are identical between CVA and MVA. Genes shown in grey contain 267 

small mutations in MVA (4 aa deletions in F1L and F3L, single aa substitution in F8L). Genes 268 

labelled in red were sequenced in v44.1 and v51.2 to identify the extent of the repair. For these 269 

four genes v44.1 matches Ankara not v51.2 or MVA.(d) Structure of F5L region in v51.2/F5LGb. 270 

F5L is followed by GFP/bsd driven by a strong synthetic promoter (not shown) and flanked by 271 

repeated sequences (rpt) to preserve the promoter for F4L. The structure of F11L in v51.2/F11LGb 272 

was similar.  273 

 274 

Fig 3: Restoration of F5L or F11L to v51.2 alters plaque morphology but not replication. (a-275 

b) Plaques formed on BS-C-1 cells under semisolid media by the recombinant viruses shown were 276 

immunostained 72 h.p.i. (a) Representative plaques, original magnification 100× (scale bar 277 



100µm). (b) Areas of individual plaques are plotted with the average shown by the solid line. (*** 278 

v51.2 significantly different to all other viruses (p<0.001), *v51.2/F5L-F11L is significantly different 279 

to all other viruses (p<0.05 for v51.2/F5L, all others p<0.001) One-way ANOVA (n=50) and Tukey 280 

pairwise test). (c) Fluorescent foci of MVA/F5LGb and v51.2/F5LGb formed on BS-C-1 under 281 

semisolid media at 72h.p.i. (100× final magnification). (d-e) Replication analysis in BS-C-1. Data 282 

are mean ± SEM of three independent wells  (d) Multiple step growth analysis (m.o.i.=0.01). (e) 283 

Single step growth analysis (m.o.i.=5). (f) Multiple step growth analysis (m.o.i.=0.01, BS-C-1) of 284 

MVA and two independent rescues of F5L in MVA (MVA/F5LGb #1 and MVA/F5LGb #2). Data 285 

expressed as fold increase (mean ± SEM of three independent wells). (g) Disposition of genes 286 

associated with plaque phenotype in rescued MVAs. 287 
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Fig 1: Rescued MVAs show a range of plaque size and morphology on BS-C-1 and 
HeLa cells. (a) Representative plaques formed by the viruses shown on BS-C-1 or HeLa cells under 

semisolid media. Cells were immunostained at 72 h.p.i. (100× final magnification, scale bars 100µm). 

(b-d) Multiple step growth analysis (m.o.i.=0.01) in (b) HeLa, (c) BS-C-1, or (d) IEC-6. Cells were 

incubated for 1h with virus then washed and fresh media added. 0 h.p.i. samples were harvested 

immediately after addition of fresh media. Cell associated virus collected at 24, 48 and 72h.p.i. was 

titrated and divided by virus titre present after absorption. Data points represent mean ± SEM of 

three independent wells.
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Fig 3: Restoration of F5L or F11L to v51.2 alters plaque morphology but not replication. 
(a-b) Plaques formed on BS-C-1 cells under semisolid media by the recombinant viruses shown were 

immunostained 72 h.p.i. (a) Representative plaques, original magnification 100× (scale bar 100µm). (b) 

Areas of individual plaques are plotted with the average shown by the solid line. (*** v51.2 

significantly different to all other viruses (p<0.001), *v51.2/F5L-F11L is significantly different to all 

other viruses (p<0.05 for v51.2/F5L, all others p<0.001) One-way ANOVA (n=50) and Tukey pairwise

test). (c) Fluorescent foci of MVA/F5LGb and v51.2/F5LGb formed on BS-C-1 under semisolid media at 

72h.p.i. (100× final magnification). (d-e) Replication analysis in BS-C-1. Data are mean ± SEM of three 

independent wells  (d) Multiple step growth analysis (m.o.i.=0.01). (e) Single step growth analysis 

(m.o.i.=5). (f) Multiple step growth analysis (m.o.i.=0.01, BS-C-1) of MVA and two independent rescues 

of F5L in MVA (MVA/F5LGb #1 and MVA/F5LGb #2). Data expressed as fold increase (mean ± SEM of 

three independent wells). (g) Disposition of genes associated with plaque phenotype in rescued MVAs.


